Sains Malaysiana 54(10)(2025): 2455-2465

http://doi.org/10.17576/jsm-2025-5410-10

 

a7-Nicotinic Acetylcholine Receptor Activation Mitigates Neuroinflammation Associated with Hypoxia-Reoxygenation Injury in Zebrafish Model

(Pengaktifan Reseptor Asetilkolina a7 Nikotinik Mengurangkan Keradangan Neuro yang Berkaitan dengan Kecederaan Hipoksia-Pengoksigen Semula dalam Model Ikan Zebra)

 

MOHAMMAD YUSUF HASAN1,, AZIM HAIKAL MD ROSLAN1,†, NORAZRINA AZMI1, NORLINAH MOHAMED IBRAHIM2, ALINA ARULSAMY3, VANESSA LIN LIN LEE3, ROSFAIIZAH SIRAN4 & MOHD KAISAN MAHADI1,*

 

1Centre for Drug Herbal and Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak,
56000 Cheras, Kuala Lumpur, Malaysia
3Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Selangor, Malaysia
4Neuroscience Research Group (NRG), Faculty of Medicine, Jalan Hospital, Universiti Teknologi MARA, Sungai Buloh Campus, 47000 Sungai Buloh, Selangor, Malaysia

 

Received: 6 May 2025/Accepted: 26 July 2025

 

†both authors contributed equally to this work

 

Abstract

Ischemic stroke is a leading cause of death worldwide, where reduced blood flow to brain tissues can cause potential permanent neurological damage. Current treatments, such as intravenous thrombolysis with tissue plasminogen activator and mechanical thrombectomy, aim to restore cerebral blood flow within hours of stroke onset, often associated with ischemic reperfusion injury. Emerging strategies target the α7-nicotinic acetylcholine receptor (α7nAChR) to resolve neuroinflammation in various pathological conditions; however, the therapeutic effects of these strategies in ischemic reperfusion injury remain unknown. This study investigates the neuroprotective and anti-inflammatory effects of α7nAChR activation in zebrafish following ischemia-reperfusion injury. The hypoxia/reoxygenation model was established by perfusing pure nitrogen gas in a hypoxia chamber for 10 min, followed by a 1-h recovery/reoxygenation in the beaker. Gene expression markers for proinflammatory and anti-inflammatory factors were examined using qRT-PCR from the surviving brain tissues. Mitochondrial dehydrogenase activity was measured to investigate the level of brain damage. A six-minute open tank test assessed behaviour, precisely the turning angle, distance travelled, maximum acceleration, and meandering. Hypoxia/reoxygenation significantly increased the expression of proinflammatory markers, such as TNF-α and IL-6, whereas an α7nAChR agonist reduced the expression of these markers. However, there was no discernible improvement in locomotor activity or brain damage in the agonist group, implying that the neurological impairment was not fully reversed following PNU 282987 pre-treatments.

 

Keywords: Inflammation; ischemic reperfusion injury; ischemic stroke; α7nAChR

 

Abstrak

Strok iskemia merupakan salah satu punca utama kematian di seluruh dunia apabila pengurangan aliran darah ke tisu otak boleh menyebabkan kerosakan neurologi kekal. Rawatan semasa seperti trombolisis intravena dengan aktivator plasminogen tisu dan trombektomi mekanikal bertujuan untuk mengembalikan aliran darah serebrum dalam beberapa jam selepas bermulanya strok, yang sering dikaitkan dengan kecederaan reperfusi iskemia. Strategi baharu yang menyasarkan α7-Nikotinik Reseptor Asetilkolina (α7nAChR) untuk menyelesaikan neuroinflamasi dalam pelbagai keadaan patologi sedang diterokai, namun kesan terapeutik dalam kecederaan reperfusi iskemia masih belum diketahui. Penyelidikan ini mengkaji kesan neuropelindung dan anti-radang daripada pengaktifan α7nAChR pada ikan zebra selepas kecederaan iskemia-reperfusi. Model hipoksia/pemulihan oksigen semula diwujudkan dengan menggunakan gas nitrogen tulen yang disalurkan ke dalam ruang hipoksia selama 10 minit, diikuti dengan pemulihan/pemulihan oksigen semula selama 1 jam di dalam bekas. Penanda ekspresi gen bagi faktor pro-radang dan anti-radang dikaji menggunakan qRT-PCR daripada tisu otak yang masih hidup. Aktiviti dehidrogenase mitokondria diukur untuk mengkaji tahap kerosakan otak. Ujian tangki terbuka selama enam minit menilai tingkah laku, khususnya sudut pusingan, jarak perjalanan, pecutan maksimum dan pergerakan berliku. Hipoksia/pemulihan oksigen semula secara signifikan meningkatkan ekspresi penanda pro-radang seperti TNF-α dan IL-6, manakala agonis α7nAChR mengurangkan penanda ini. Namun, tiada peningkatan ketara dalam aktiviti lokomotor dan kerosakan otak pada kumpulan agonis, menunjukkan bahawa kecacatan neurologi tidak dipulihkan sepenuhnya selepas pra-rawatan PNU 282987.

 

Kata kunci: Inflamasi; kecederaan reperfusi iskemia; strok iskemia; α7nAChR

 

REFERENCES

Agbanoma, G., Li, C., Ennis, D., Palfreeman, A.C., Williams, L.M. & Brennan, F.M. 2012. Production of TNF-α in macrophages activated by T cells, compared with lipopolysaccharide, uses distinct IL-10-dependent regulatory mechanism. J. Immunol. 188(3): 1307-1317.

Aguado, L., Joya, A., Garbizu, M., Plaza-García, S., Iglesias, L., Hernández, M.I., Ardaya, M., Mocha, N., Gómez-Vallejo, V., Cossio, U., Higuchi, M., Rodríguez-Antigüedad, A., Freijo, M.M., Domercq, M., Matute, C., Ramos-Cabrer, P., Llop, J. & Martín, A. 2023. Therapeutic effect of α7 nicotinic receptor activation after ischemic stroke in rats. J. Cereb. Blood Flow Metab. 43(8): 1301-1316.

Al-Mufti, F., Marden, F.A., Burkhardt, J.K., Raper, D., Schirmer, C.M., Baker, A., Chen, P.R., Bulsara, K.R., Narsinh, K.H., Amans, M.R., Cooper, J., Yaghi, S., Al-Kawaz, M. & Hetts, S.W. 2024. Endovascular therapy for anterior circulation emergent large vessel occlusion stroke in patients with large ischemic cores: A report of the SNIS Standards and Guidelines Committee. J. Neurointerv. Surg. 2024: jnis-2023-021444

Almeida, D.V., Bianchini, A. & Marins, L.F. 2013. Growth hormone overexpression generates an unfavorable phenotype in juvenile transgenic zebrafish under hypoxic conditions. Gen. Comp. Endocrinol. 194: 102-109.

Báez-Pagán, C.A., Delgado-Vélez, M. & Lasalde-Dominicci, J.A. 2015. Activation of the macrophage α7 nicotinic acetylcholine receptor and control of inflammation. J. Neuroimmune Pharmacol. 10(3): 468-476.

Barrionuevo, W.R., Fernandes, M.N. & Rocha, O. 2010. Aerobic and anaerobic metabolism for the zebrafish, Danio rerio, reared under normoxic and hypoxic conditions and exposed to acute hypoxia during development. Braz. J. Biol. 70(2): 425-434.

Braga, M.M., Rico, E.P., Córdova, S.D., Pinto, C.B., Blaser, R.E., Dias, R.D., Rosemberg, D.B., Oliveira, D.L. & Souza, D.O. 2013. Evaluation of spontaneous recovery of behavioral and brain injury profiles in zebrafish after hypoxia. Behav. Brain Res. 253: 145-151.

Cao, Z., Jensen, L.D., Rouhi, P., Hosaka, K., Länne, T., Steffensen, J.F., Wahlberg, E. & Cao, Y. 2010. Hypoxia-induced retinopathy model in adult zebrafish. Nature Protocols 5(12): 1903-1910.

Chavda, V., Patel, S., Alghamdi, B.S. & Ashraf, G.M. 2021. Endothelin-1 induced global ischaemia in adult zebrafish: A model with novel entity of stroke research. J. Chem. Neuroanat. 118: 102025.

Cheng, Q. & Yakel, J.L. 2015. Activation of α7 nicotinic acetylcholine receptors increases intracellular cAMP levels via activation of AC1 in hippocampal neurons. Neuropharmacology 95: 405-414.

Choo, B.K.M., Kundap, U.P., Kumari, Y., Hue, S.M., Othman, I. & Shaikh, M.F. 2018. Orthosiphon stamineus leaf extract affects TNF-α and seizures in a zebrafish model. Front Pharmacol. 9: 139.

Clemens, J.A., Stephenson, D.T., Smalstig, E.B., Dixon, E.P. & Little, S.P. 1997. Global ischemia activates nuclear factor-κB in forebrain neurons of rats. Stroke 28(5): 1073-1080; discussion 1080-1071.

Eby, L.A. & Crowder, L.B. 2002. Hypoxia-based habitat compression in the Neuse River Estuary: context-dependent shifts in behavioral avoidance thresholds. Canadian Journal of Fisheries and Aquatic Sciences 59(6): 952-965.

Gabriel, C., Justicia, C., Camins, A. & Planas, A.M. 1999. Activation of nuclear factor-κB in the rat brain after transient focal ischemia. Brain Res. Mol. Brain Res. 65(1): 61-69.

Guo, M., Lu, H., Qin, J., Qu, S., Wang, W., Guo, Y., Liao, W., Song, M., Chen, J. & Wang, Y. 2019. Biochanin a provides neuroprotection against cerebral ischemia/reperfusion injury by Nrf2-mediated inhibition of oxidative stress and inflammation signaling pathway in rats. Med. Sci. Monit. 25: 8975-8983.

Han, Z., Shen, F., He, Y., Degos, V., Camus, M., Maze, M., Young, W.L. & Su, H. 2014. Activation of α-7 nicotinic acetylcholine receptor reduces ischemic stroke injury through reduction of pro-inflammatory macrophages and oxidative stress. PLoS ONE 9(8): e105711.

Harhous, Z., Booz, G.W., Ovize, M., Bidaux, G. & Kurdi, M. 2019. An update on the multifaceted roles of STAT3 in the heart. Front. Cardiovasc. Med. 6: 150.

Hasan, M.Y., Siran, R. & Mahadi, M.K. 2023. The effects of vagus nerve stimulation on animal models of stroke-induced injury: A systematic review. Biology (Basel) 12(4): 555.

Hasan, M.Y., Roslan, A.H.M., Azmi, N., Ibrahim, N.M., Arulsamy, A., Lee, V.L.L., Siran, R., Vidyadaran, S., Chua, E.W. & Mahadi, M.K. 2024. α7-nicotinic acetylcholine receptor activation modulates BV2 microglial plasticity via miR-21/TNF-α/NFκB in oxygen-glucose deprivation/reoxygenation. Journal of Molecular Neuroscience 75(1): 2.

Hou, Z. & Brenner, J.S. 2024. Developing targeted antioxidant nanomedicines for ischemic penumbra: Novel strategies in treating brain ischemia-reperfusion injury. Redox Biol. 73: 103185.

Jia, J., Jiao, W., Wang, G., Wu, J., Huang, Z. & Zhang, Y. 2024. Drugs/agents for the treatment of ischemic stroke: Advances and perspectives. Med. Res. Rev. 44(3): 975-1012.

Kinkel, M.D., Eames, S.C., Philipson, L.H. & Prince, V.E. 2010. Intraperitoneal injection into adult zebrafish. J. Vis. Exp. (42): 2126.

Kundap, U.P., Kumari, Y., Othman, I. & Shaikh, M.F. 2017. Zebrafish as a model for epilepsy-induced cognitive dysfunction: A pharmacological, biochemical and behavioral approach. Front. Pharmacol. 8: 515.

Lee, H., Herrmann, A., Deng, J.H., Kujawski, M., Niu, G., Li, Z., Forman, S., Jove, R., Pardoll, D.M. & Yu, H. 2009. Persistently activated Stat3 maintains constitutive NF-κB activity in tumors. Cancer Cell 15(4): 283-293.

Lee, S.B., Choe, Y., Chon, T.S. & Kang, H.Y. 2015. Analysis of zebrafish (Danio rerio) behavior in response to bacterial infection using a self-organizing map. BMC Vet. Res. 11: 269.

Lee, V.L.L., Norazit, A., Noor, S.M. & Shaikh, M.F. 2022. Channa Striatus protects against PTZ-induced seizures in LPS pre-conditioned zebrafish model. Front. Pharmacol. 13: 821618.

Lee, Y., Lee, S., Park, J.W., Hwang, J.S., Kim, S.M., Lyoo, I.K., Lee, C.J. & Han, I.O. 2018. Hypoxia-induced neuroinflammation and learning-memory impairments in adult zebrafish are suppressed by glucosamine. Mol. Neurobiol. 55(11): 8738-8753.

Lim, M.Y. & Bernier, N.J. 2023. Intergenerational plasticity to cycling high temperature and hypoxia affects offspring stress responsiveness and tolerance in zebrafish. J. Exp. Biol. 226(16): jeb245583.

Loperena, R., Van Beusecum, J.P., Itani, H.A., Engel, N., Laroumanie, F., Xiao, L., Elijovich, F., Laffer, C.L., Gnecco, J.S. & Noonan, J. 2018. Hypertension and increased endothelial mechanical stretch promote monocyte differentiation and activation: Roles of STAT3, interleukin 6 and hydrogen peroxide. Cardiovasc. Res. 114(11): 1547-1563.

Makhija, D.T. & Jagtap, A.G. 2014. Studies on sensitivity of zebrafish as a model organism for Parkinson’s disease: Comparison with rat model. J. Pharmacol. Pharmacother. 5(1): 39-46.

Martin, S.S., Aday, A.W., Almarzooq, Z.I., Anderson, C.a.M., Arora, P., Avery, C.L., Baker-Smith, C.M., Barone Gibbs, B., Beaton, A.Z., Boehme, A.K., Commodore-Mensah, Y., Currie, M.E., Elkind, M.S.V., Evenson, K.R., Generoso, G., Heard, D.G., Hiremath, S., Johansen, M.C., Kalani, R., Kazi, D.S., Ko, D., Liu, J., Magnani, J.W., Michos, E.D., Mussolino, M.E., Navaneethan, S.D., Parikh, N.I., Perman, S.M., Poudel, R., Rezk-Hanna, M., Roth, G.A., Shah, N.S., St-Onge, M.P., Thacker, E.L., Tsao, C.W., Urbut, S.M., Van Spall, H.G.C., Voeks, J.H., Wang, N.Y., Wong, N.D., Wong, S.S., Yaffe, K. & Palaniappan, L.P. 2024. 2024 Heart disease and stroke statistics: A Report of US and global data from the American Heart Association. Circulation 149(8): e347-e913.

Mokin, M., Ansari, S.A., Mctaggart, R.A., Bulsara, K.R., Goyal, M., Chen, M. & Fraser, J.F. 2019. Indications for thrombectomy in acute ischemic stroke from emergent large vessel occlusion (ELVO): Report of the SNIS Standards and Guidelines Committee. J. Neurointerv. Surg. 11(3): 215-220.

Nurmi, A., Lindsberg, P.J., Koistinaho, M., Zhang, W., Juettler, E., Karjalainen-Lindsberg, M.L., Weih, F., Frank, N., Schwaninger, M. & Koistinaho, J. 2004. Nuclear factor-κB contributes to infarction after permanent focal ischemia. Stroke 35(4): 987-991.

Samavati, L., Rastogi, R., Du, W., Hüttemann, M., Fite, A. & Franchi, L. 2009. STAT3 tyrosine phosphorylation is critical for interleukin 1 beta and interleukin-6 production in response to lipopolysaccharide and live bacteria. Mol. Immunol. 46(8-9): 1867-1877.

Saver, J.L., Goyal, M., Van Der Lugt, A., Menon, B.K., Majoie, C.B., Dippel, D.W., Campbell, B.C., Nogueira, R.G., Demchuk, A.M., Tomasello, A., Cardona, P., Devlin, T.G., Frei, D.F., Du Mesnil De Rochemont, R., Berkhemer, O.A., Jovin, T.G., Siddiqui, A.H., Van Zwam, W.H., Davis, S.M., Castaño, C., Sapkota, B.L., Fransen, P.S., Molina, C., Van Oostenbrugge, R.J., Chamorro, Á., Lingsma, H., Silver, F.L., Donnan, G.A., Shuaib, A., Brown, S., Stouch, B., Mitchell, P.J., Davalos, A., Roos, Y.B. & Hill, M.D. 2016. Time to treatment with endovascular thrombectomy and outcomes from ischemic stroke: A meta-analysis. JAMA 316(12): 1279-1288.

Townsend, M., Whyment, A., Walczak, J.S., Jeggo, R., Van Den Top, M., Flood, D.G., Leventhal, L., Patzke, H. & Koenig, G. 2016. α7-nAChR agonist enhances neural plasticity in the hippocampus via a GABAergic circuit. J. Neurophysiol. 116(6): 2663-2675.

Virani, S.S., Alonso, A., Benjamin, E.J., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Chamberlain, A.M., Chang, A.R., Cheng, S., Delling, F.N., Djousse, L., Elkind, M.S.V., Ferguson, J.F., Fornage, M., Khan, S.S., Kissela, B.M., Knutson, K.L., Kwan, T.W., Lackland, D.T., Lewis, T.T., Lichtman, J.H., Longenecker, C.T., Loop, M.S., Lutsey, P.L., Martin, S.S., Matsushita, K., Moran, A.E., Mussolino, M.E., Perak, A.M., Rosamond, W.D., Roth, G.A., Sampson, U.K.A., Satou, G.M., Schroeder, E.B., Shah, S.H., Shay, C.M., Spartano, N.L., Stokes, A., Tirschwell, D.L., Vanwagner, L.B. & Tsao, C.W. 2020. Heart disease and stroke statistics-2020 update: A report from the American Heart Association. Circulation 141(9): e139-e596.

Wall, E.A., Zavzavadjian, J.R., Chang, M.S., Randhawa, B., Zhu, X., Hsueh, R.C., Liu, J., Driver, A., Bao, X.R., Sternweis, P.C., Simon, M.I. & Fraser, I.D. 2009. Suppression of LPS-induced TNF-α production in macrophages by cAMP is mediated by PKA-AKAP95-p105. Sci. Signal. 2(75): ra28.

Wang, Y.Y., Lin, S.Y., Chang, C.Y., Wu, C.C., Chen, W.Y., Huang, W.C., Liao, S.L., Wang, W.Y. & Chen, C.J. 2023. α7 nicotinic acetylcholine receptor agonist improved brain injury and impaired glucose metabolism in a rat model of ischemic stroke. Metab. Brain Dis. 38(4): 1249-1259.

Wu, F., Zhang, Z., Ma, S., He, Y., He, Y., Ma, L., Lei, N., Deng, W. & Wang, F. 2024. Microenvironment-responsive nanosystems for ischemic stroke therapy. Theranostics 14(14): 5571-5595.

Wu, Y.J., Wang, L., Ji, C.F., Gu, S.F., Yin, Q. & Zuo, J. 2021. The role of α7nAChR-mediated cholinergic anti-inflammatory pathway in immune cells. Inflammation 44(3): 821-834.

Xu, Z.Q., Zhang, W.J., Su, D.F., Zhang, G.Q. & Miao, C.Y. 2021. Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: A narrative review. Ann. Transl. Med. 9(6): 509.

Yang, X., Pan, Y., Cai, L., Wang, W., Zhai, X., Zhang, Y., Wu, Q., Chen, J., Zhang, C. & Wang, Y. 2024. Calycosin ameliorates neuroinflammation via TLR4-mediated signal following cerebral ischemia/reperfusion injury in vivo and in vitro. J. Inflamm. Res. 17: 10711-10727.

Yu, X. & Li, Y.V. 2011. Zebrafish as an alternative model for hypoxic-ischemic brain damage. Int. J. Physiol. Pathophysiol. Pharmacol. 3(2): 88-96.

Yuan, F., Jiang, L., Li, Q., Sokulsky, L., Wanyan, Y., Wang, L., Liu, X., Zhou, L., Tay, H.L., Zhang, G., Yang, M. & Li, F. 2020. A selective α7 nicotinic acetylcholine receptor agonist, PNU-282987, attenuates ILC2s activation and alternaria-induced airway inflammation. Front. Immunol. 11: 598165.

Zegeye, M.M., Lindkvist, M., Fälker, K., Kumawat, A.K., Paramel, G., Grenegård, M., Sirsjö, A. & Ljungberg, L.U. 2018. Activation of the JAK/STAT3 and PI3K/AKT pathways are crucial for IL-6 trans-signaling-mediated pro-inflammatory response in human vascular endothelial cells. Cell. Commun. Signal. 16(1): 55.

Zeng, M., Zhang, R., Yang, Q., Guo, L., Zhang, X., Yu, B., Gan, J., Yang, Z., Li, H., Wang, Y., Jiang, X. & Lu, B. 2022. Pharmacological therapy to cerebral ischemia-reperfusion injury: Focus on saponins. Biomed. Pharmacother. 155: 113696.

Zhang, L., Yang, M., Wang, Z., Fan, D., Shen, F., Zou, X., Zhang, X., Hu, S., Hu, B. & Hu, X. 2024. Sevoflurane postconditioning ameliorates cerebral hypoxia/reoxygenation injury in zebrafish involving the Akt/GSK-3β pathway activation and the microtubule-associated protein 2 promotion. Biomed. Pharmacother. 175: 116693.

Zhou, L., Zheng, L.F., Zhang, X.L., Wang, Z.Y., Yao, Y.S., Xiu, X.L., Liu, C.Z., Zhang, Y., Feng, X.Y. & Zhu, J.X. 2021. Activation of α7nAChR protects against gastric inflammation and dysmotility in Parkinson’s disease rats. Front. Pharmacol. 12: 793374.

Zhou, X., Cheng, Y., Zhang, R., Li, G., Yang, B., Zhang, S. & Wu, J. 2017. α7 nicotinic acetylcholine receptor agonist promotes retinal ganglion cell function via modulating GABAergic presynaptic activity in a chronic glaucomatous model. Sci. Rep. 7(1): 1734.

Zhu, W.D., Xu, J., Zhang, M., Zhu, T.M., Zhang, Y.H. & Sun, K. 2018. MicroRNA‑21 inhibits lipopolysaccharide‑induced acute lung injury by targeting nuclear factor‑κB. Exp. Ther. Med. 16(6): 4616-4622.

 

*Corresponding author; email: kaisanmahadi@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next